Electrification of transport at the convergence of mobility, energy for smarter city transformations

This audio was created using Microsoft Azure Speech Services

Written by:
Jean-Pascal Tricoire: Chairman and Chief Executive Officer, Schneider Electric
Francesco Starace: CEO and General Manager, Enel Group

As urbanization increases — an additional 2.5 billion people will live in cities by 2050[1]  — cities and suburbs will undergo significant transformations to create sustainable living conditions for their residents. Energy and mobility are the twin pillars of these transformations, and both will require radical adaptation to meet the demographic and economic growth without increasing congestion and pollution. The question is whether policy-makers and business leaders can harness and combine them in ways that maximize their benefits for environment and create greater efficiency and economic growth. The Fourth Industrial Revolution offers an unprecedented opportunity.

The Fourth Industrial Revolution in energy and mobility systems.

Mobility is changing.

As electric vehicles (EV) become more affordable, some are predicting that they will constitute almost a third of new-car sales by the end of the next decade.[2] Ride-sharing continues to surge, with estimates that by 2030, it will account for more than 25% of all miles driven globally, up from 4% today.[3] These changes are just the first hints of what is to come as we will soon see autonomous vehicles (AV) and commercial fleets of EVs integrated as parts of everyday life. In the future, AVs will also cost significantly less per mile than vehicles with internal combustion engines for personal-use — by as much as 40% — and could also reduce congestion and traffic incidents.[4]

At the same time, energy is changing.

We are amid a global evolution toward energy systems that are cleaner and increasingly decentralized, with energy generated, stored, and distributed closer to the final customers, with renewables and storage technologies. At the same time, digitalization will allow customers and electricity system operators to control where, when, and how electricity is being used and new business models to emerge. And finally, new and more energy uses are going to be electrified — mobility being one of the critical ones.

These trends have the potential to reinforce each other and actively contribute to make our cities smarter. Forward-thinking business leaders and policy-makers must act now to lay the foundation for sustainable innovation in urban environments — able to capture and combine these new trends.

A new approach to electrification of transport is required.

Electric mobility is widely seen today as a way to improve air quality and meet climate goals, but rarely is it integrated in a comprehensive vision for smarter cities. EVs continue to be associated to traditional ownership and use models, and still considered as just cars: the innovative uses and services associated to batteries or to the integration with smart buildings are ignored or at least not enough explored. Charging stations are still developed with limited or no consideration of the energy issues, or not exploiting enough digital technologies, over-complicating the customer experience. Their location will also inevitably change with the transition to shared and autonomous mobility.

“Electric Vehicles for Smarter Cities: The Future of Energy and Mobility”, a report from The World Economic Forum, developed in cooperation with Bain & Company, suggests following three general principles:

1. Take a multi-stakeholder and market-specific approach

The investment and infrastructure required to support electric mobility will vary significantly from one place to another. Any roadmap to electric mobility should be adapted to three main characteristics of the specific market: local infrastructure and design; energy system; and mobility culture and patterns. All relevant stakeholders should be engaged to collectively define a new paradigm for cities that go beyond the today’s industry divisions, in search for complementary municipal, regional, and national policies.

2. Prioritize high-use electric vehicles

Electric taxis and public transportation will have a great impact in reducing carbon emissions. These types of vehicles are driven far more than personal-use vehicles, so commercial and public EV fleet development should be encouraged. For example, Schneider Electric and BMW are part of a consortium of companies in Bangkok that is partnering with King Mongkut’s University of Technology Thonburi to spur the use of electric vehicles across Thailand, initially through car sharing and a campus-based electric bus.

3. Deploy critical charging infrastructure today while anticipating the mobility transformation

EV charging infrastructure should be developed along highways, at destination points, and close to public transportation nodes. This is critical for three reasons: first, to keep pace with current demand. Second, to address range anxiety issues by making charging stations accessible, convenient, and easy to locate. And, lastly, to promote the adoption of EVs in commercial and private markets.

In Hong Kong, the local government incentivizes EV infrastructure developers by allowing them to integrate Octopus, a popular smart payment system also used to access public transportation. This gives EV drivers a convenient and familiar way to purchase energy, and aims to encourage more people to drive EVs by ensuring the availability of a network of public charging stations.

The infrastructure should be deployed in combination with grid edge technologies — such as decentralized generation, storage, and smart buildings — and integrated in smart grids, while at the same time offering a digital end-to-end customer experience. This will magnify the benefits of grid edge technologies: increasing reliability, resilience, efficiency, and asset utilization of the overall system; reducing CO2 emissions; creating new services for customers; and creating new jobs.

The convergence of energy and mobility.

When these three general principles are followed, mobility assets and energy systems help each other.

EVs can be used as a decentralized energy resource and provide new, controllable storage capacity and electricity supply that is useful for the stability of the energy system. In markets where regulation allows EVs to be used as a source of flexibility, energy players start betting on this vision, with cars working as “batteries on wheels.” For example, in a pilot project in Denmark, Enel and Nissan set up the first vehicle-to-grid (V2G) commercial hub: by selling frequency regulation services for system balancing purposes to the Danish transmission system operator (TSO), a car can generate around €1,500 in annual revenue.

New business models are possible, where the drivers and fleet operators of EVs could play as producer-consumers of energy services, such as vehicle-to-everything (V2x) and smart charging. These new energy services will create additional opportunities for revenue sharing between the vehicle owners and the energy suppliers that would reduce the total cost of ownership of the EVs and accelerate their market penetration.

At the EUREF Campus on the outskirts of Berlin, the EV charging stations are integrated in the local micro smart grid with solar and wind generation. The micro grid’s artificial intelligence and machine-to-machine learning capacity actively optimizes EV charging. It controls the charging demands to match the network capacity and sends energy surplus back to the grid based on dynamic pricing. This creates a system where electricity is supplied, stored, and potentially sent back actively and intelligently. In this context, all new constructions at the campus are sustainable buildings and as of 2014, the EUREF Campus had already met the German government’s climate targets for 2050.

Designing a better future.

The transformations happening in the fields of energy and mobility are inevitable, influenced by market factors and megatrends that are virtually unstoppable. Their convergence is the opportunity. Businesses have the chance to spearhead it in cities. Policymakers have the power to promote innovation and new ways of thinking in local governments that will make it possible.

On both fronts, the convergence of energy and mobility must be strategic, intentional, and guided, if cities and citizens are to receive the maximum benefits.

The energy sector will have to accelerate the path toward a cleaner, more digitalized and decentralized system, yet one that is more connected and customer centric. Enabling dynamic pricing and creating new roles for network operators by redesigning the regulatory paradigm will be vital to this strategy.

The mobility sector will have the opportunity to develop new business models based on service and sharing models, and the new uses and services associated with EVs as decentralized energy resources.

Urban planners will need the support of energy and mobility-relevant stakeholders to define the optimal location of the publicly accessible charging infrastructure.

All stakeholders will be critical to ensure a seamless customer experience, by supporting the deployment of a flexible, open, and multiservice infrastructure.

The World Economic Forum’s new report provides a detailed overview of this unprecedented opportunity at the intersection of energy and mobility.

[1] 2014 Revision of World Urbanization Prospects (WUP2014) [Population Division of the Department of Economic and Social Affairs of the United Nations]
[2] The Electric-Car Boom Is So Real Even Oil Companies Say It’s Coming, Bloomberg, April 2017
[3] The sharing economy has already transformed how we move around our cities. What’s next? World Economic Forum, January 2017
[4] The Future of Energy and Mobility: Electric vehicles for smarter cities, World Economic Forum, February 2018

Tags: , , , , , , , , , ,


  • Col Vishwas Asolkar

    6 years ago

    A great planning for transformation is required fordeveloping a workable policy in favour of the migrating rural demography… This surely would lead to agrarian emergecy in rural industry and agriculture … Rather it would be our endeavor to evolve our industrial and ecomic bases more in the rural areas , … Congesting the population at urban centres or semi urban centers would create a chaotic condition ….

  • Paddy s padmanabhan

    6 years ago

    The key issue in large cities for charging vehicles is real estate for charging stations. Cities like ny London mumbai etc have no space and existing petrol bunks are to be used. The issue is also time taken for charging a single car the longer it takes larger is the space required for charging stations. How do we address these issues. Mobile charging stations. Does it solve the problem.

  • Sachin Sawhney

    6 years ago

    This is a great article. They are indeed connected and on both ends, the discussion has shifted from simply environmental to economical. For example, the recent increase in gas prices will help EV’s and batteries in general. Adoption around education will be key. When I compare say the Model 3 on sites like zappyride.com and autoblog.com there is no comparison. Tesla beats combustible engine any day. Its all about value.

  • Batteries as a Service: this is exactly the king of new paradigm which you are describing in this excellent analysis.
    Please have a look at EP Tender’s web site. Seems like a good match with your vision.

Comments are closed.